AREC 815: Experimental and Behavioral Economics

Simple Distributional Preference Experiments Show that Humans Are Not Always Perfectly Selfish

Professor: Pamela Jakiela

Department of Agricultural and Resource Economics University of Maryland, College Park

4 Simple Experiments

Culture Matters... Sometimes

Roth et al (AER, 1991) conduct identical experiments in 4 countries

- Ultimatum games repeated 10 times, stranger matching
- Market experiments involving one buyer, multiple sellers

Take great pains to address potential confounds

- Tackle potential experimenter effects head on: each "local" experimenter conducts sessions in Pittsburgh and her home country
- Address stake size concerns by conducting sessions in Pittsburgh with a standard stake-size (10 USD) and a larger pie (30 USD)
- Work together to arrive at English version of instructions that translates into Hebrew, Japanese, and Slovenian effectively

	O ffer – α			
	$Offer - \alpha$			
	$\sigma_{\mu\nu} = \alpha$	$+\beta MI + \gamma WF$	$R + \lambda X + \varepsilon$	
where MI is r	narket integrati	on and WR is y	world religion	
	numer integrati		wond rengion	
Table 2. Linear regression	models for offers. These ordinar	ry least-squares models include	four additional control variables	(sex, age, community size
and education). Coefficien	is are followed by standard erro	is, indicated with z; P values a	re given in parentileses.	
Variables	All offers*	DG offers†	UG offers†	TPG offers†
MI	0.12 ± 0.023 (<0.001)	0.17 ± 0.035 (<0.001)	0.098 ± 0.035 (0.005)	0.11 ± 0.044 (0.044
WR‡	5.96 ± 2.04 (0.0036)	6.4 ± 3.61 (0.079)	10.4 ± 2.67 (<0.001)	0.45 ± 3.06 (0.879)
Income (per U.S. \$1000)	0.096 ± 0.089 (0.28)	-0.012 ± 0.15 (0.93)	0.16 ± 0.10 (0.13)	-2.25 ± 0.94 (0.017)
Wealth (per U.S. \$1000)	0.0012 ± 0.006 (0.83)	0.0013 ± 0.008 (0.88)	-0.0056 ± 0.008 (0.43)	1.2 ± 0.25 (<0.001
Household size	-0.24 ± 0.21 (0.24)	-0.13 ± 0.31 (0.67)	$-0.24 \pm 0.2 (0.37)$	-1.0 ± 0.43 (0.019)
Observations; R ²	920; 0.084	336; 0.10	319; 0.14	265; 0.10
*Clustered robust standard errors	actust for repeated observations of the sa	the present of a second fundation that after boy. How	enter of the second sec	an annulations (Table 1) to control

Simple Models of Distributional Preferences

Simple, stylized model of subjects' social preferences:

Player *B*'s preferences can be represented by the utility function

$$u_b(\pi_a, \pi_b) = (\rho \cdot r + \sigma \cdot s) \pi_a + (1 - \rho \cdot r - \sigma \cdot s) \pi_b$$

with the model parameters defined as follows:

- π_a , π_b are payouts to a, b respectively
- r = 1 if $\pi_b \ge \pi_a$, zero otherwise
- s = 1 if $\pi_b < \pi_a$, zero otherwise

Simple Models of Distributional Preferences

Simple, stylized model of subjects' social preferences:

Player B's preferences can be represented by

 $u_b(\pi_a, \pi_b) = (\rho \cdot r + \sigma \cdot s) \pi_a + (1 - \rho \cdot r - \sigma \cdot s) \pi_b$

- Competitive preferences: $\sigma \le \rho \le 0$
- Inequality aversion: $\sigma < 0 < \rho < 1$
- Social welfare: $0 < \sigma \le \rho \le 1$

Compare predictive power using "simple tests" — binary choices

• Player B simply chooses between two possible allocations, (π_a, π_b)

Testing the	Models	: Ex	kperimen	ital F	Result	S
	Player B's	Choi	се	Left	Right	
	(800, 200)	VS.	(0,0)	1.00	0.00	
	(0,800)	VS.	(400, 400)	0.78	0.22	
	(400, 400)	VS.	(750, 400)	0.31	0.69	
	(400, 400)	VS.	(750, 375)	0.51	0.49	
	(300,600)	VS.	(700, 500)	0.67	0.33	
	(200, 700)	VS.	(600, 600)	0.27	0.73	
AREC 815	Experimental and Beha	vioral Ecor	nomics Simple Dis	tributional Pr	eference Experim	nents, Slide 45

Testing the Models: Experimental Results

Observed decisions consistent with:

Self Interest	68%
Competitive Preferences	60%
Inequality Aversion	75%
Social Welfare	97%

Comparing the fit of the models:

- Least support for competitive preferences
- More support for social welfare than inequality aversion
- Many subjects appear to trade off self interest, social welfare

Fitting the Model

Model	Restrictions	ρ	σ	LL
Self-interest	$\rho=\sigma=0$			-593.4
Altruism	$\rho = \sigma$	0.212***	0.212***	-574.5
Behindness aversion	ho = 0		0.118^{*}	-591.5
Charity	$\sigma = 0$	0.422***		-527.9
Two-parameter model		0.423***	-0.014	-527.7

Recip	rocity?		
Q:	Does Player B reward helpful actions	s by Player	Α?
A: 3	Sometimes		
		(400, 400)	(750, 400)
	B chooses (400, 400) or (750, 400)	0.31	0.69
	A chooses (750,0) or lets B choose	0.06	0.94
		(0,800)	(400, 400)
	B chooses (0,800) or (400,400)	0.78	0.22
	A chooses (800,0) or lets B choose	0.45	0.55

Q: Does Player B reward helpful actions by F	Player A?	
A: Sometimes but not always		
A. Sometimes but not always		
((400, 400)	(750, 375)
B chooses (400, 400) or (750, 375) (Spain)	0.52	0.48
B chooses (400, 400) or (750, 375) (US)	0.50	0.50
A chooses (725,0) or lets B choose (Spain)	0.62	0.38
A chooses (800,0) or lets B choose (Spain)	0.62	0.38
A chooses (750,0) or lets B choose (Spain)	0.61	0.39
Concern withdrawal: we put greater weight on <i>More true when helping others is costly?</i>	the powerle	255

Re	ciprocity?		
	Q: Does Player B punish unhelpful actions b	y Player A?	
	A: resi		
		(100,100)	
		(400, 400)	(750, 375)
	B chooses (400,400) or (750,375) (Spain)	0.52	0.48
	B chooses (400,400) or (750,375) (US)	0.50	0.50
	A chooses (550, 550) or lets B choose (Spain)	0.93	0.07
	A chooses (550, 550) or lets B choose (US)	0.82	0.18

Recipro	city?		
Q: Do	es Player B punish unhelpful actions	s by Player A	٩?
A: Yes	!		
		(800, 200)	(0,0)
_	B chooses (800, 200) or (0,0)	1.00	0.00
	A chooses (500, 500) or lets B choose	0.91	0.09
	A chooses (750,750) or lets B choose	0.88	0.12
	AREC 815: Experimental and Behavioral Economics Simple Distrib	outional Preference Expe	riments, Slide 51

