AREC 815: Experimental and Behavioral Economics

Reciprocity and Conditional Cooperation

Professor: Pamela Jakiela

Department of Agricultural and Resource Economics University of Maryland, College Park

Conditional Cooperation in Public Goods Games

	Dependent variable: Belief about other group members' contribution				
Model	(1)	(2)	(3)		
Period	-0.761^{***} (0.090)	-0.079 (0.042)			
Others' contributions $(t - 1)$		0.394*** (0.023)	0.415*** (0.020)		
Belief $(t - 1)$		0.549*** (0.037)	0.569*** (0.036)		
Constant	10.711 ^{alata} (0.864)	0.835* (0.398)	0.118 (0.148)		
Observations	1,260	1,260	1,260		
R^2	0.26	0.64	0.64		
Notes: OLS regressions with sessions) in parentheses. *** Significant at the 1 per ** Significant at the 5 per *Significant at the 10 per	data from period 2 to 10 cent level. cent level. rrcent level.). Robust standard e	rrors (clustered on		

Explaining the Decline in Cooperation

Model	(1)	(2)	(3)	(4a)	(4b)	(4c)
Periods used	1-10	1-10	1-10	1-10	1-5	6-10
Subjects excluded ^a	No	No	No	Yes	Yes	Yes
Period	-0.639 (0.071)***	-0.060 (0.056)				
Predicted contribution		0.242 (0.069)**	0.242 (0.069)**	0.443 (0.073)***	0.385 (0.074)***	0.614 (0.082)***
Belief		0.644 (0.071)***	0.666 (0.059)***	0.545 (0.065)***	0.582 (0.065)***	0.376 (0.116)**
Constant	8.343 (0.545)***	0.005 (0.569)	-0.473 (0.244)	-0.318 (0.312)	$^{-0.204}_{(0.541)}$	$\begin{array}{c} -0.116 \\ (0.378) \end{array}$
Observations	1,400	1,400	1,400	1,260	630	630
R^2	0.10	0.34	0.34	0.38	0.33	0.33

*** Significant at the 1 percent level. ** Significant at the 5 percent level. *Significant at the 10 percent level.

Source: Fischbacher and Gächter (2010)

Reciprocity and Conditional Cooperation, Slide 11 AREC 815: Experimental and Behavioral Economics

Reciprocity in Experimental Labor Markets

Fehr et al (1993) propose simple labor market experiment

- Subjects randomly chosen to be "firms" offer those chosen to be "workers" a wage, w, and stipulate a desired level of effort
- Firms cannot punish employee deviations from agreed effort level

Fair wage-effort hypothesis: labor relations as a gift exchange game, firms may offer high wages to extract greater effort from workers

- Positive reciprocity \Rightarrow workers reward above market-clearing wages
- Negative reciprocity \Rightarrow workers punish "unfairly" low wages
- Employers may reward, punish deviations from expected worker effort

AREC 815: Experimental and Behavioral Economics Reciprocity and Conditional Cooperation, Slide 14

		Shirking		No Shirking	Excess Effort	
Freatment	No. Trades	e < % of Trades with $e < \bar{e}$	Average Amount of $(\tilde{e} - e)/\tilde{e}$	$e = \bar{e}$ % of Trades with $e = \bar{e}$	e > % of Trades with $e > \bar{e}$	$\frac{e}{\begin{array}{c} \text{Average} \\ \text{Amount of} \\ (e - \tilde{e})/(1 - \tilde{e}) \end{array}}$
WRT SRT	509 144	65.42 20.83	0.97 0.82	33.01 72.22	1.57 6.94	0.20 0.83

Reciprocity in Experimental Labor Markets TABLE VIa FIRMS' PUNISHMENT/REWARD DECISION AT STAGE THREE, GIVEN WORKERS' EFFORT DECISION No Shirking Excess Effort Shirking Actual Punishment/Reward: $e < \tilde{e}$ 30 trades $e = \tilde{e}$ 104 trades $\epsilon > \tilde{\epsilon}$ 10 trades 18 (0.19) p < 1not possible not possible $\begin{array}{l} p=1\\ p>1 \end{array}$ 52 52 (1.62) 12 6 4 not possible (1.53) Note: The number in parentheses shows the average level of p. TABLE VIb WORKERS' EXPECTATION FORMATION: DO THEY ANTICIPATE FIRMS' RECIPROCITY? No Shirking $e = \tilde{e}$ 104 trades Excess Effort $e > \tilde{e}$ 10 trades Shirking $e < \tilde{e}$ 30 trades Expected Punishment/Reward: 18 (0.59) 12 not possible $p^{\epsilon} < 1$ not possible $\begin{array}{l} p^{\epsilon}=1\\ p^{\epsilon}>1 \end{array}$ 29 75 (1.51) 0 10 (1.61) not possible Note: The number in parentheses shows the average level of p^{e} . AREC 815: Experimental and Behavioral Economics Reciprocity and Conditional Cooperation, Slide 22

Rabin (1993): Fairness Equilibrium

Kindness is defined in terms of how close Player *i*'s action brings Player *j* to achieving her maximum possible (Pareto-efficient) payoff

$$f(a_i, b_j) = \frac{\pi_j(a_i, b_j) - \pi_j^{\mathsf{fair}}(b_j)}{\pi_j^{\mathsf{max}}(b_j) - \pi_j^{\mathsf{min}}(b_j)}$$

where $\pi_j^{\mathsf{fair}}(b_j) = \left[\pi_j^{\mathsf{max}}(b_j) - \pi_j^{\mathsf{low}}(b_j)
ight]/2$ is a neutral fair outcome

Utility takes the form:

$$U_i(a_i, b_j, c_i) = \pi_i(a_i, b_j) + \tilde{f}(b_j, c_i) \cdot [1 + f(a_i, b_j)]$$

where $\tilde{f}(b_j, c_i)$ measures how kind Player *i* believes Player *j* is attempting to be given her beliefs about *i*'s strategy

AREC 815: Experimental and Behavioral Economics Reciprocity and Conditional Cooperation, Slide 30

Levine (1998): "Altruism and Spitefulness"

Levine (1998) proposes a model of altruism, spite, and reciprocity which incorporates beliefs about j's type into i's utility:

$$\mathbf{v}_i = \mathbf{u}_i + \frac{\alpha_i + \lambda \alpha_j}{1 + \lambda} \mathbf{u}_j$$

where $a_i, a_j \in [-1, 1]$ and $\lambda \ge 0$

The distribution of types is known, but Player j's type is unknown

- All games are now Bayesian games
- Player j's actions may reveal something about her type

Levine (1998) uses data from UGs to argue that $\lambda \neq 0$

AREC 815: Experimental and Behavioral Economics Reciprocity and Conditional Cooperation, Slide 31

Charness-Rabin (2002): a "Simple" Model Player B's preferences can be represented by the utility function $u_b(\pi_a, \pi_b) = (\rho \cdot r + \sigma \cdot s + \theta \cdot q) \pi_a + (1 - \rho \cdot r - \sigma \cdot s - \theta \cdot q) \pi_b$ with the model parameters defined as follows: • π_a , π_b are payouts to a, b respectively • r = 1 if $\pi_b \ge \pi_a$, zero otherwise • s = 1 if $\pi_b < \pi_a$, zero otherwise • q = -1 if Player A has misbehaved, q = 0 otherwise Negative reciprocity pivots indifference curves, possibly to the point where Player B's utility is decreasing in the payoff to Player A

Cox et al (2007): a "Tractable Model"

Cox et al (2007) propose simple extension to CES utility:

$$u_i(\pi_i,\pi_j) = \left(\pi_i^{\alpha} + \theta(r)\pi_j^{\alpha}\right)/\alpha$$

The utility weight that Player *i* places on the payoff to Player *j* depends on *i*'s "emotional state" — parameterized by $\theta(r)$

$$\theta(r_i) = \theta_0 + ar(x_j) + \varepsilon_i$$

 ${\sf and}$

$$r(x_j) = \frac{m_i(x_j) - m_i^{\text{fair}}}{\max_x m_i(x_j) - \min_x m_i(x_j)}$$

where $m_i(x_j)$ is the max payout to *i* if *j* chooses action x_j

 $\Rightarrow \theta(r)$ is strictly increasing in r

AREC 815: Experimental and Behavioral Economics Reciprocity and Conditional Cooperation, Slide 33