
AREC 815: Experimental and Behavioral Economics

Estimating Distributional Preference Parameters

Professor: Pamela Jakiela

Department of Agricultural and Resource Economics University of Maryland, College Park

Maximum Likelihood Estimation

Let y_j be the observed decision in choice situation j for $j = 1, \ldots, J$

$$y_j = g(x; \theta) + \varepsilon_j$$

where x denotes the exogenous parameters of the choice situation (e.g. price), θ denotes the preference parameters, and $\varepsilon_j \sim \mathcal{N}(0, \sigma^s)$

- Subject chooses y_j from a convex choice set
- $g(x; \theta) + \varepsilon_j$ is the demand function
 - Derived by solving for utility-maximizing choice

Because
$$\varepsilon_j \sim \mathcal{N}(0, \sigma^s)$$
, we know that $\underbrace{y_j - g(x; \theta)}_{j} \sim \mathcal{N}(0, \sigma^s)$

 ε_i

AREC 815: Experimental and Behavioral Economics Individual Effort & Fairness, Slide 3

Maximum Likelihood Estimation

The normal error term characterizes the distribution of y_i :

$$f(y_j|x;\theta) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\left[\left(\frac{y_j - g(x;\theta)}{\sigma}\right)^2/2\right]}$$
$$= \frac{1}{\sigma}\phi\left(\frac{y_j - g(x;\theta)}{\sigma}\right)$$

Knowing $f(y_j|x;\theta)$, we can write down the log-likelihood function for θ :

$$\ell(\theta) = \sum_{j} \ln [f(y_j | x; \theta)]$$
$$= \sum_{j} \ln \left[\frac{1}{\sigma} \phi \left(\frac{y_j - g(x; \theta)}{\sigma} \right) \right]$$

ML Estimation: CES Example

CES other-regarding utility function:

$$u_{s}(\pi^{s},\pi^{o}) = [\alpha(\pi^{s})^{\rho} + (1-\alpha)(\pi^{o})^{\rho}]^{1/\rho}$$

Interpretation of the model parameters:

- $\hat{\alpha}$: fair-mindedness/selfishness, weight on payoff to *self* vs. *other*
- $\hat{\rho}$: curvature of altruistic indifference curves, measures willingness to trade off equality (payoff difference) and efficiency (sum of payoffs)

Subjects maximize utility s.t. budget constraint $\pi^s + p\pi^o = m$

AREC 815: Experimental and Behavioral Economics Individual Effort & Fairness, Slide 5

ML Estimation: CES Example

CES expenditure (e.g. demand) function is given by:

$$s^* = \frac{\pi^s}{m} = \frac{\left(\frac{\alpha}{1-\alpha}\right)^{1/(1-\rho)}}{\left(\rho\right)^{\rho/(\rho-1)} + \left(\frac{\alpha}{1-\alpha}\right)^{1/(1-\rho)}}$$

Subjects choose π^s from convex set; assume normally-distributed errors:

$$s_j = \frac{\pi_j^s}{m_j} = \frac{\left(\frac{\alpha}{1-\alpha}\right)^{1/(1-\rho)}}{\left(\rho_j\right)^{\rho/(\rho-1)} + \left(\frac{\alpha}{1-\alpha}\right)^{1/(1-\rho)}} + \varepsilon_j$$

for $\varepsilon \sim \mathcal{N}(\mathbf{0}, \sigma^s)$

ML Estimation: CES Example

To derive the likelihood, we exploit the fact that $\varepsilon_j = s_j - s^* (p; \alpha, \rho, \sigma)$:

$$\ell(\theta) = \sum_{j} \ln \left[f(s_{j}|\rho; \alpha, \rho, \sigma) \right]$$
$$= \sum_{j} \ln \left[\frac{1}{\sigma} \phi\left(\frac{s_{j} - s^{*}}{\sigma}\right) \right]$$
$$= \sum_{j} \ln \left[\frac{1}{\sigma} \phi\left(\frac{s_{j} - \frac{A}{\rho_{j}^{\rho/(\rho-1)} + A}}{\sigma}\right) \right]$$
where
$$A = \left(\frac{\alpha}{1 - \alpha}\right)^{1/(1 - \rho)}$$

AREC 815: Experimental and Behavioral Economics Individual Effort & Fairness, Slide 7

ML Estimation: CES Example This likelihood function is implemented in PS1, Question 7: function [ll]=ll_ces(param) % Declare GLOBAL variables global obs share price alpha=param(1,1); rho=param(2,1); sigma=param(3,1); num=(alpha/(1-alpha))^(1/(1-rho)); num=num.*ones(obs,1); denom=price.^(rho/(rho-1))+num; dens=(normpdf((share-num./denom)/sigma))/sigma; dens=max(dens,0.0000001); ll=-sum(log(dens),1);

AREC 815: Experimental and Behavioral Economics

Individual Effort & Fairness, Slide 8

ML Estimation: Adjusting for Censoring

What if $s^* > 1$? How do we adjust for censoring $(C_j = 1)$? $\ell(\alpha, \rho, \sigma) = \sum_j \ln \left[\left\{ (1 - C_j) \cdot f(s_j | p; \alpha, \rho, \sigma) + C_j \cdot \Pr[s_j = 1 | p; \alpha, \rho, \sigma] \right\} \right]$ $= \sum_j \ln \left[\left\{ (1 - C_j) \cdot \frac{1}{\sigma} \phi\left(\frac{s_j - s^*}{\sigma}\right) + C_j \cdot \Pr[s_j^* + \varepsilon_j > 1] \right\} \right]$ $= \sum_j \ln \left[\left\{ (1 - C_j) \cdot \frac{1}{\sigma} \phi\left(\frac{s_j - s^*}{\sigma}\right) + C_j \cdot [1 - \Phi(1 - s^*)] \right\} \right]$ Because $\Pr[s_j^* + \varepsilon_j > 1] = 1 - \Pr[\varepsilon_j < 1 - s_j^*] = 1 - \Phi(1 - s^*)$

AREC 815: Experimental and Behavioral Economics Individual Effort & Fairness, Slide 9

<section-header><section-header><section-header><section-header><code-block><code-block></code></code>

ML Estimation: Discrete Outcomes

Subjects choose from a menu of allocations: $a_k \in A$ with K elements

• Example: "simple tests" proposed by Charness and Rabin (2002)

Log-likelihood takes the form:

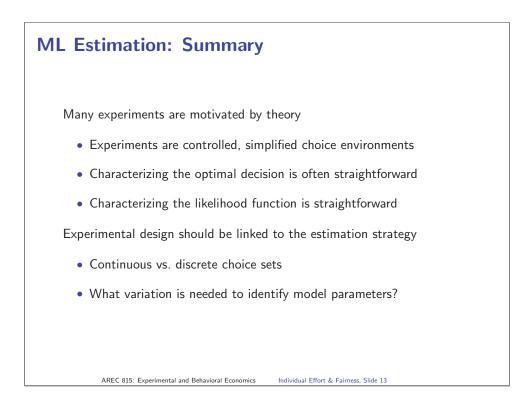
$$\ell\left(heta
ight) = \sum_{j}\sum_{k}z_{jk}\cdot\ln\left[P_{jk}\left(x; heta
ight)
ight]$$

where

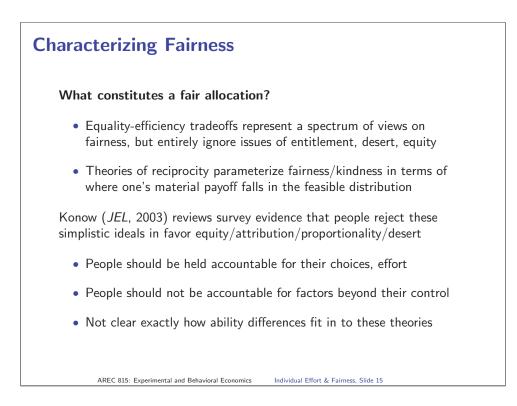
- z_{jk} is an indicator for choosing option a_k in choice situation j
- $P_{jk}(x_j; \theta)$ is the probability of choosing a_k in choice situation j

AREC 815: Experimental and Behavioral Economics Individual Effort & Fairness, Slide 11

ML Estimation: Additive Random Utility Model


In an additive random utility model, realized utility is the sum of the modeled component ("representative utility") and a random component


$$V_j(a_k|x_j; heta) = U(a_k|x_j; heta) + \epsilon_j$$


When ϵ_i is EV1-distributed, the choice probabilities are given by:

$$P_{jk}(x_{j};\theta) = \frac{e^{U(a_{k}|x_{j};\theta)}}{\sum_{k \in K} e^{U(a_{k}|x_{j};\theta)}}$$
$$= \frac{1}{1 + \sum_{z \neq k \in K} e^{U(a_{z}|x_{j};\theta) - U(a_{k}|x_{j};\theta)}}$$

When $U(a_k|x_j; \theta)$ is a non-linear function of the structural parameters, normalize by the variance of the logit error term (which can be estimated)

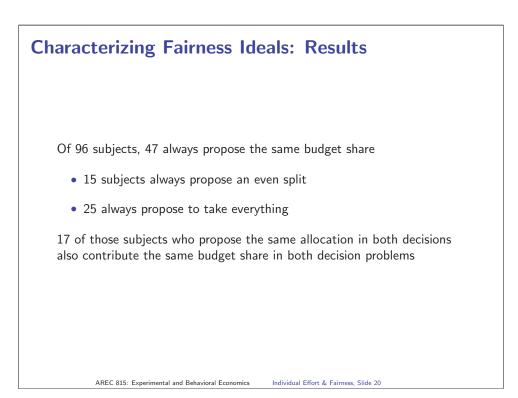
Characterizing Fairness Ideals

Propose a specific utility formulation:

$$U_i(y_i|X) = \gamma y_i - \frac{\beta_i}{2X}(y_i - m_i(X))^2$$

- X = dictator's budget
- $m_i(X) =$ fairness ideal (i.e. "fair" payoff for i)
- $\beta_i = \text{cost of deviating from fairness ideal}$
- $\gamma =$ marginal utility of money relative, to logit error term

Implied optimal (interior) allocation to self:


$$y_i^* = \frac{\gamma}{\beta_i} \cdot X + m_i(X)$$

AREC 815: Experimental and Behavioral Economics Individual Effort & Fairness, Slide 17

Characterizing Fairness Ideals Conduct modified dictator games preceded by team production phase • Agent *i* assigned return to investment, a_i • Choose investment level, q_i • Total income $X(\mathbf{a}, \mathbf{q}) = a_i q_i + a_j q_j$ is divided between *i* and *j* • Both *i* and *j* propose an allocation; one is chosen at random Implied fair allocation to *other* subject: • Egalitarianism $\Rightarrow m_i(\mathbf{a}, \mathbf{q}) = X(\mathbf{a}, \mathbf{q})/2$ • Libertarianism $\Rightarrow m_i(\mathbf{a}, \mathbf{q}) = a_i q_i$ • "Liberal egalitarianism" $\Rightarrow m_i(\mathbf{a}, \mathbf{q}) = \frac{q_i}{q_i + q_j} \cdot X(\mathbf{a}, \mathbf{q})$

Characterizing Fairness Ideals: Results

Shar	re Amount (in N
Mean 0.27	229
Median 0.29	200
Standard deviation 0.21	9 219
Minimum 0	0
Maximum 0.75	5 800
imum 0.75	800

Characterizing Fairness Ideals: Results

Simple reduced form analysis of allocation decisions:

$$ProposedShare_{ik} = \alpha + \delta \left(\frac{q_{ik}}{q_{ik} + q_{jk}} \right) + \psi \left(\frac{a_{ik}q_{ik}}{a_{ik}q_{ik} + a_{jk}q_{jk}} \right) + \epsilon_{ik}$$

$\begin{array}{c} (0.128) & (0.159) & (0.144) \\ \text{Contribution share} & 0.215^{**} & 0.121 & 0.084 \\ & (0.109) & (0.138) & (0.14) \\ \text{Constant} & 0.55^{***} & 0.573^{***} & 0.541^{***} & 0.33^{***} \\ & (0.074) & (0.077) & (0.079) & (0.073) \\ \text{Budget size controls} & \text{Yes} & \text{Yes} & \text{Yes} \\ \text{S}^2 & 0.034 & 0.033 & 0.038 & 0.193 \\ \text{Ote: robust standard errors clustered at the player level. ** indicates significance at the 99 perce} \\ \text{weil; ** indicates significance at the 90 percent level; and * indicates significance at the 90 perce} \\ \end{array}$	Sample:		All Subjects	6	Variable
$ \begin{array}{c c} \mbox{Contribution share} & 0.215^{**} & 0.121 & 0.084 \\ & (0.109) & (0.138) & (0.14) \\ \mbox{Constant} & 0.55^{***} & 0.573^{***} & 0.541^{***} & 0.33^{***} \\ & (0.074) & (0.077) & (0.079) & (0.073) \\ \mbox{Budget size controls} & Yes & Yes & Yes \\ \mbox{Q}^2 & 0.034 & 0.033 & 0.038 & 0.193 \\ \mbox{lote: robust standard errors clustered at the player level. } ** indicates significance at the 90 perce \\ \mbox{wel; } ** indicates significance at the 90 perce \\ \mbox{wel; } ** indicates significance at the 90 perce \\ \end{tabular} $	Investment share	0.26**	•	0.157	0.467***
$\begin{array}{c} (0.109) & (0.138) & (0.14) \\ \text{Constant} & 0.55^{***} & 0.573^{***} & 0.541^{***} & 0.33^{***} \\ (0.074) & (0.077) & (0.079) & (0.073) \\ \text{Budget size controls} & \text{Yes} & \text{Yes} & \text{Yes} \\ 2^2 & 0.034 & 0.033 & 0.038 & 0.193 \\ \text{lote: robust standard errors clustered at the player level. ** indicates significance at the 90 perce \\ \text{well; ** indicates significance at the 90 perce } \end{array}$		(0.128)		(0.159)	(0.144)
Constant 0.55^{***} 0.573^{***} 0.541^{***} 0.33^{***} Budget size controls Yes	Contribution share	•	0.215**	0.121	0.084
$\begin{array}{c cccc} & (0.074) & (0.077) & (0.079) & (0.073) \\ \hline & & Yes & Yes & Yes \\ Polymony & 0.034 & 0.033 & 0.038 & 0.193 \\ \hline & & Polymony & Polym$			(0.109)	(0.138)	(0.14)
Budget size controls Yes	Constant	0.55***	0.573***	0.541***	0.33****
R ² 0.034 0.033 0.038 0.193 lote: robust standard errors clustered at the player level. * * * indicates significance at the 99 percevel; ** indicates significance at the 90 percevel; ** indicates significance; ** indicates; ** indi		(0.074)	(0.077)	(0.079)	(0.073)
to the providence of the player level. * * * indicates significance at the 99 percevel; ** indicates significance at the 90 percevel; ** indicates significance at the 90 percevel; ** indicates significance at the 90 percevel.	Budget size controls	` Yes ´	Yes	` Yes ´	Yes
evel; ** indicates significance at the 95 percent level; and * indicates significance at the 90 perce	R^2	0.034	0.033	0.038	0.193
	evel; ** indicates significance	e at the 95 perce	ent level; and * ind	dicates significance	at the 90 percer
		e at the 95 perce	ent level; and * ind	dicates significance	at the 90 percer
	evel; ** indicates significance	e at the 95 perce	nt level; and * ind	dicates significance	at the 90 percer

A structural model of subjects allocation decisions:

- Dictators choose from finite choice set: 50, 100, 150, ...
 - \Rightarrow Discrete choice model
- Utility of allocating y_i to self given by

$$U_{i}(y|a,q) = \underbrace{\gamma y_{i} - \frac{\beta_{i}}{2X(a,q)} (y_{i} - m_{i}(a,q))^{2}}_{=V_{i}(y|a,q)} + \varepsilon_{iy}$$

~

where $m_i(a, q)$ is *i*'s fairness ideal and ε is IID EV1

• Error terms imply logit probability structure

Estimating the Distribution of Fairness Ideals

The probability that i chooses to allocate herself y is:

$$\Rightarrow P_{iy} = \left(\frac{e^{V_i(y|a,q)}}{\sum_{z=0,50,\ldots,X(a,q)} e^{V_i(z|a,q)}}\right)$$

If we knew the parameters $\{\beta_i, m_i(a, q)\}$ for a specific individual *i*, we could write down an explicit formula for *i*'s choice probabilities

 Conversely, if we had a single subject (with a fixed {β_i, m_i(a, q)}), we could estimate the parameters via maximum likelihood (logit)

Use a **mixed logit** framework to estimate distribution of fairness ideals (e.g. libertarian, egalitarian, liberal egalitarian) within subject population

 People are heterogenous, not enough data to estimate individual parameters; need to impose structure on parameter distributions

AREC 815: Experimental and Behavioral Economics Individual Effort & Fairness, Slide 23

Estimating the Distribution of Fairness Ideals

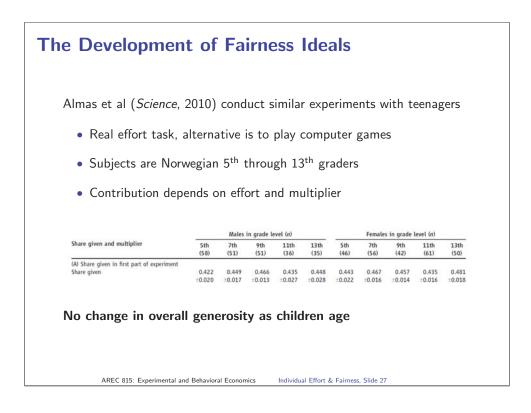
Don't observe individual β_i parameters

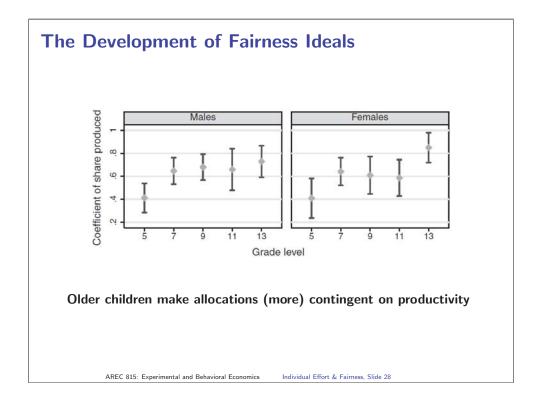
• Assume $\ln \beta \sim \mathcal{N}(\zeta, \sigma^2)$; ζ and σ are parameters to be estimated

Primary goal is to estimate λ_k , fraction of subject pool with holding fairness ideal k, where $k \in \{\text{egalitarian}, \text{libertarian}, \text{liberal egalitarian}\}$

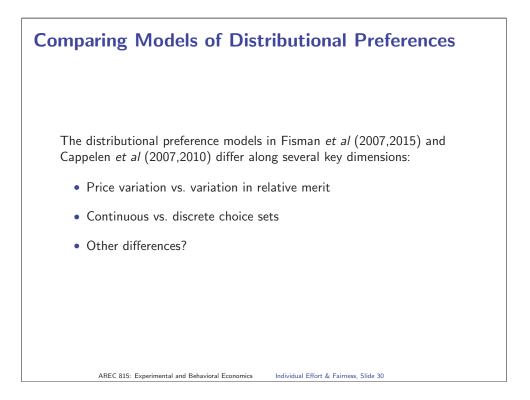
· Never know an individual's fairness ideal, only dist'n

Write down choice probabilities in terms of parameters that will govern the distribution of preferences: ζ , σ , λ_E , λ_{LE} , λ_L


$$P_{iy} = \sum_{k} \lambda_k \int \left(\frac{e^{V_i(y|a,q,k,\beta,\gamma)}}{\sum_{z=0,50,\dots,X(a,q)} e^{V_i(z|a,q,k,\beta,\gamma)}} \right) f(\beta|\zeta,\sigma) d\beta$$


 \Rightarrow Simulate the integral following methods described in Train (2003)

Characterizing Fairness Ideals


1 2 3 4 λ^{SE} , share strict egalitarian 0.435 0.674 0. (0.090) (0.085) (0. λ^{LE} , share liberal egalitarian 0.381 0.725 0. λ^{L} , share libertarian 0.184 0.275 0.326 (0.066) (0.085) (0.085) (0. γ , marginal utility of money 28.359 16.437 18.189 22. ζ , mean of log(β) 5.385 4.171 4.304 4. (0.349) (0.412) (0.459) (0.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
λ^{LE} , share liberal egalitarian 0.381 0.725 0. (0.088) (0.085) $(0.$ λ^{L} , share libertarian 0.184 0.275 0.326 (0.066) (0.085) $(0.$ γ , marginal utility of money 28.359 16.437 18.189 22. (3.589) (1.739) (2.174) $(2.$ ζ , mean of $\log(\beta)$ 5.385 4.171 4.304 $4.$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$λ^L$, share libertarian 0.184 0.275 0.326 (0.066) (0.085) (0.088) γ, marginal utility of money 28.359 16.437 18.189 22. (3.589) (1.739) (2.174) (2. (2.174) (2. ζ, mean of log(β) 5.385 4.171 4.304 4.
$\begin{array}{cccc} (0.066) & (0.085) & (0.085) \\ \gamma, \mbox{ marginal utility of money} & 28.359 & 16.437 & 18.189 & 22. \\ (3.589) & (1.739) & (2.174) & (2. \\ \zeta, \mbox{ mean of } \log(\beta) & 5.385 & 4.171 & 4.304 & 4. \end{array}$
γ , marginal utility of money28.35916.43718.18922.(3.589)(1.739)(2.174)(2. ζ , mean of log(β)5.3854.1714.3044.
$(3.589) (1.739) (2.174) (2. \zeta, mean of log(\beta) 5.385 4.171 4.304 4.$
ζ , mean of log(β) 5.385 4.171 4.304 4.
5,
(0.349) (0.412) (0.459) (0.459)
σ , standard deviation of log(β) 3.371 3.155 3.148 2.
(0.530) (0.507) (0.498) (0.
Log likelihood -337.584 -367.958 -366.969 -350.

Characterizing Fairness Ideals CDF(beta)=.2 CDF(beta)=.3 CDF(beta)=.1 30 30 30 ر کم (ک (ک) کر (ک) 10-Pr(y | beta ² 0 -10 0 2 4 6 8 1 y in units of NOK 1000. 0 .2 .4 .6 .8 1 y in units of NOK 1000. 0 _2 .4 .6 .8 1 y in units of NOK 1000. CDF(beta)=.4 CDF(beta)=.5 CDF(beta)=.6 20-10-(\$) 0-\$ -10-20 20 20-0-(5)-20-_40-.3.4 beta) Pr(y | beta 10 (٨) 05 1 7(y lbe 0 1.2 1.2 -20--10 -60 0 2 4 6 8 1 y in units of NOK 1000 0 2 4 6 8 1 y in units of NOK 1000. 0 .2 .4 .6 .8 1 y in units of NOK 1000. CDF(beta)=.7 CDF(beta)=.8 CDF(beta)=.9 50 2 4 6 8 Pr(v beta) -500-≶_1000-_1500-2.4.6.8 Pr(y beta) -100 (a) -200 -200 -300 -400 (۸) ۸ -50 -100 -150 -2000 -500 0 .2 .4 .6 .8 1 y in units of NOK 1000_ 0 .2 .4 .6 .8 1 y in units of NOK 1000... 0 .2 .4 .6 .8 1 y in units of NOK 100 FIGURE 1. IMPLIED CHOICE PROBABILITIES Notes: Implied choice probabilities are plotted as solid bars for an individual with m = 0.5 and deterministic utility, V(y). They are calculated at the deciles of the estimated β distribution using the estimates in the preferred specification 1 in Table 2. AREC 815: Experimental and Behavioral Economics Individual Effort & Fairness, Slide 26

5th 7th 9th 11th 13th All Share of egalitarians 0.636 0.401 0.272 0.267 0.224 0.36 ±0.060 ±0.059 ±0.057 ±0.056 ±0.056 ±0.02 Share of meritocrats 0.054 0.220 0.363 0.396 0.428 0.28 ±0.037 ±0.054 ±0.063 ±0.069 ±0.075 ±0.02 Share of libertarians 0.310 0.379 0.364 0.337 0.347 0.34 ±0.057 ±0.055 ±0.061 ±0.059 ±0.069 ±0.02 Log likelihood -827.4 -881.4 -797.6 -865.0 -790.3 -4219.
±0.060 ±0.059 ±0.057 ±0.056 ±0.056 ±0.02 Share of meritocrats 0.054 0.220 0.363 0.396 0.428 0.28 ±0.037 ±0.054 ±0.054 ±0.063 ±0.069 ±0.075 ±0.02 Share of libertarians 0.310 0.379 0.364 0.337 0.347 0.34 ±0.057 ±0.055 ±0.061 ±0.059 ±0.069 ±0.02
Share of meritocrats 0.054 0.220 0.363 0.396 0.428 0.28 ±0.037 ±0.054 ±0.063 ±0.069 ±0.075 ±0.02 Share of libertarians 0.310 0.379 0.364 0.337 0.347 0.34 ±0.057 ±0.055 ±0.061 ±0.059 ±0.069 ±0.02
±0.037 ±0.054 ±0.063 ±0.069 ±0.075 ±0.02 Share of libertarians 0.310 0.379 0.364 0.337 0.347 0.34 ±0.057 ±0.055 ±0.061 ±0.059 ±0.069 ±0.02
Share of libertarians 0.310 0.379 0.364 0.337 0.347 0.34 ±0.057 ±0.055 ±0.061 ±0.059 ±0.069 ±0.02
±0.057 ±0.055 ±0.061 ±0.059 ±0.069 ±0.02
Log likelihood -827.4 -881.4 -797.6 -865.0 -790.3 -4219.

