AREC 815: Experimental and Behavioral Economics Charitable Giving: Altruism vs. Social Pressure Professor: Pamela Jakiela Department of Agricultural and Resource Economics University of Maryland, College Park Social Pressure vs. Social Preferences

Two Models of Distributional Preferences

Differences between CES model and model of fairness ideals:

$$U_{i} = \left[\alpha \pi_{i}^{\rho} + (1 - \alpha) \pi_{j}^{\rho}\right] / \rho$$

versus

$$U_i = y_i - \frac{\beta}{2X} (y_i - m_i(X))^2$$

- Both represent homothetic distributional preferences
 - ▶ CES model focuses on responses to price changes
 - ▶ Fairness model focuses on changes in the provenance of income
- CES model implies giving to others increases utility, while model of fairness ideals suggests subjects pay a cost because of their ideals

How much of actual ("real world") giving is welfare-enhancing altruism toward others, and how much is utility-reducing guilt, obligation, etc?

AREC 815: Experimental and Behavioral Economics

Charitable Giving: Altruism vs. Social Pressure, Slide 3

Opting Out of Dictator Games

Lazear et al (AEJ: Applied, 2012) conduct DGs with an **opt out** option; recipients never learn that they were part of a DG but received nothing

· Test whether dictators actually have a preference for giving

Propose the existence of three social preference types:

- Nonsharers
- Willing sharers
- Reluctant sharers

Obvious prediction:

• Mean allocation to recipient should decrease with option to opt out

AREC 815: Experimental and Behavioral Economics

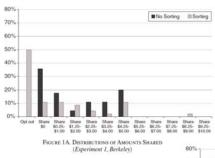
Opting Out of Dictator Games: Theory

Let $D_i = 1$ if i participates in a DG, $D_i = 0$ otherwise

• Participating means that recipient learns structure of game

Utility function: $U_i = u_i(D_i, \pi_i, \pi_j)$

- Dictators allocate $\pi_i > 0$ to recipient if: u(1, m x, x) > u(1, m, 0)
- Standard assumption is that this implies: u(1, m-x, x) > u(0, m, 0)


Anonymous dictators may feel an obligation to "be nice"

- Willing sharers: u(1, m x, x) > u(0, m, 0)
- Reluctant sharers: u(0, m, 0) > u(1, m x, x) > u(1, m, 0)

AREC 815: Experimental and Behavioral Economics

Charitable Giving: Altruism vs. Social Pressure, Slide 5

Opting Out of Dictator Games: Results

80%
70%
60%
40%
40%
0%
Cyt od Share Share

FIGURE 1B. DISTRIBUTIONS OF AMOUNTS SHARED

AREC 815: Experimental and Behavioral Economics

Opting Out of Dictator Games: Results

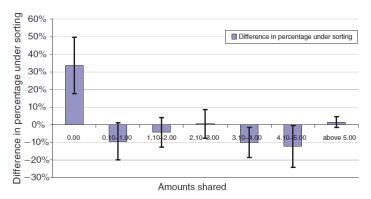


Figure 1C. Distribution of Difference in Amounts Shared ($Experiment\ 1$, $Berkeley\ and\ Barcelona$)

Some reluctant sharers seem to allocate a lot to the recipient!

AREC 815: Experimental and Behavioral Economics

Charitable Giving: Altruism vs. Social Pressure, Slide 7

Opting Out of Dictator Games: Results

TABLE 1—EFFECT OF SORTING ON SHARING

Model: Dependent variable:	OL Proportion		Tot Proportion		Probit Proportion Shared		
	(1)	(2)	(3)	(4)	(5)	(6)	
Sorting	-0.102** (0.029)	-0.079* (0.043)	-0.234*** (0.0578)	-0.173** (0.078)	-0.309*** (0.073)	-0.253** (0.102)	
Barcelona		-0.013 (0.045)		-0.024 (0.074)		-0.041 (0.112)	
Sorting × Barcelona		-0.050 (0.058)		-0.145 (0.124)		-0.139 (0.154)	
Observations (Pseudo-) R ²	168 0.070	168 0.084	168 0.086	168 0.107	168 0.070	168 0.082	

Notes: Sorting is a dummy equal to 1 in treatments where subjects can opt out. The dependent variable Proportion Shared is 0 for subjects who opted out. The dependent variable Shared Something is a dummy equal to one if the subject shared a positive amount. The tobit model accounts for 89 observations being left-censored at zero. The probit model estimates are marginal effects. Robust standards are in parentheses (with bias-correction (HC3) in the linear case, see MacKinnon and White 1985) and are calculated using jackknife estimation for the tobit model. Constant included.

AREC 815: Experimental and Behavioral Economics

Opting Out: Within-Subject Evidence

Within-subject follow-up experiment:

- Intended to show which types are least willing to participate in DGs
- In Decisions 2 through 5: choice between participating in a dictator game with budget $m \ge 10$ or opting out of the DG and receiving 10

			Dictators' Decisions (Means)		
Decision	Endowment	Sorting?	Allocations	Participation	
1	\$10.00	No	\$2.42 (24 percent)	100	
2	\$10.00	Yes	\$1.22 (12 percent)	46	
3	\$10.50	Yes	\$1.34 (13 percent)	57	
4	\$11.00	Yes	\$1.42 (13 percent)	74	
5	\$12.00	Yes	\$1.52 (13 percent)	76	

AREC 815: Experimental and Behavioral Economics

Charitable Giving: Altruism vs. Social Pressure, Slide 9

Opting Out: Within-Subject Evidence

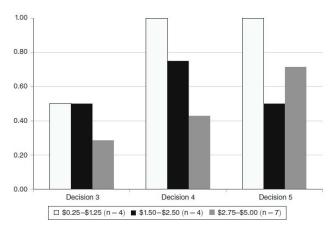


Figure 2A. Proportion of Reluctant Sharers Choosing to Enter by Decision and Initial Amount Shared (*Anonymity*)

AREC 815: Experimental and Behavioral Economics

Opting Out: Within-Subject Evidence

Table 4—Determinants of Entry into Sharing Environment (Experiment 2, excluding decisions 1 and 2)

Sample:	All classified subject	Reluctant sharers			
	(1)	(2)	(3)	(4)	(5)
Initial proportion shared		0.003 (0.175)	-0.502*** (0.182)	0.282 (0.417)	-0.823*** (0.265)
Nonsharers	-0.154** (0.077)				
Reluctant sharers	-0.346*** (0.060)		-0.350*** (0.052)	-0.025 (0.196)	
Initial prop. shared × reluctant sharers				-0.882* (0.460)	
Endowment in dictator game	0.068*** (0.009)	0.059*** (0.010)	0.067*** (0.010)	0.066*** (0.010)	0.086*** (0.014)
Observations Pseudo-R ²	312 0.228	234 0.113	234 0.270	234 0.279	141 0.223

Notes: The table reports marginal effects of probit estimations. The dependent variable is an indicator equal to one if the subject shared any positive amount. Robust standard errors are in parentheses.

AREC 815: Experimental and Behavioral Economics

Charitable Giving: Altruism vs. Social Pressure, Slide 11

Opting Out of Dictator Games: Takeaways

Heterogeneity is important (yet again!)

- Some dictators are motivated by a desire to give
 - ▶ In other words, giving is utility-increasing for them
- Other dictators feel a utility-decreasing compunction to give
 - ▶ Must be driven by a desire to avoid "letting down" the recipient
 - ► Self-signalling, etc., cannot explain opting out in DGs

Capturing the range of human motivations in a model is tough!

• Highlights the (welfare) importance of targeting opportunities to give, potential costs of nudges designed to increase charitable giving

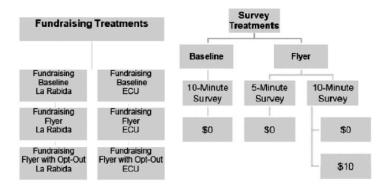
AREC 815: Experimental and Behavioral Economics

Social Pressure and Charitable Giving

Social Pressure and Charitable Giving

DellaVigna et al (QJE, 2012) conduct closely related field experiment built around door-to-door fundraising campaign for two charities

Treatments allowing for opting out, solicitation avoidance


- No information
- Flyer
- Flyer w/ opt out option

Measure importance of "social pressure" in charitable giving Model of opening door, giving conditional on opening door

AREC 815: Experimental and Behavioral Economics

Experimental Design

AREC 815: Experimental and Behavioral Economics

Charitable Giving: Altruism vs. Social Pressure, Slide 15

Optimal Response to Solicitation

Utility depends on:

- Money income: W g
- Supply of the public good: $a \ln (g + G_{-i})$
- Social cost of rebuffing a fundraiser: $s(g) = [S(g_s g)] \mathcal{I}(g \le g_s)$
 - $ightharpoonup g_s$ is minimum "acceptable" donation

Heterogeneity in terms of W, a

AREC 815: Experimental and Behavioral Economics

Optimal Response to Solicitation

Utility of giving g > 0 to door-to-door campaigner:

$$U(g) = u(W - g) + a[v(g + G_{-i})] - s(g)$$

= $(W - g) + a[ln(g + G_{-i})] - [S(g_s - g)]\mathcal{I}(g \le g_s)$

Note that $\mathit{U}(g)$ is strictly concave if $\partial v^2/\partial^2 g < 0$ and a>0

• Claim: $g^*(a)$ is weakly increasing in a

AREC 815: Experimental and Behavioral Economic

Charitable Giving: Altruism vs. Social Pressure, Slide 17

Optimal Response to Solicitation

Case 1:
$$g^* = 0 \Leftrightarrow \frac{\partial U(g)}{\partial g} \bigg|_{g=0} \leq 0$$

AREC 815: Experimental and Behavioral Economics

Optimal Response to Solicitation

Case 4:
$$g^* > g_s \Leftrightarrow \left. \frac{\partial U(g)}{\partial g} \right|_{g \to g_s^+} > 0$$

AREC 815: Experimental and Behavioral Economi

Charitable Giving: Altruism vs. Social Pressure, Slide 19

Optimal Response to Solicitation

Case 3:
$$g^* = g_s \Leftrightarrow \frac{\partial U(g)}{\partial g} \bigg|_{g \to g_s^-} \ge 0 \text{ AND } \frac{\partial U(g)}{\partial g} \bigg|_{g \to g_s^+} \le 0$$

AREC 815: Experimental and Behavioral Economics

Optimal Response to Solicitation

Case 2: $g^* \in (0, g_s)$

$$\left. \frac{\partial \textit{U}(\textit{g})}{\partial \textit{g}} \right|_{\textit{g}=0} > 0 \quad \text{and} \quad \left. \frac{\partial \textit{U}(\textit{g})}{\partial \textit{g}} \right|_{\textit{g} \to \textit{g}_s^-} < 0$$

together imply an interior solution for g^* which i below g_s

Solving for interior solution:

AREC 815: Experimental and Behavioral Economic

Charitable Giving: Altruism vs. Social Pressure, Slide 21

Optimal Response to Solicitation

Case	Donation	Utility
$a \leq \underline{\underline{a}}(S)$	$g^* = 0$	
$\underline{\underline{a}}(S) < a < \underline{\underline{a}}(S)$	$g^* \in (0, g_s)$	
$\underline{a}(S) \leq a \leq \overline{a}(S)$	$g^*=g_s$	
$\overline{a}(S) < a$	$g^* > g_s$	

AREC 815: Experimental and Behavioral Economics

When to Open the Door

In absence of flyer, $Pr(donor at home) = h_0$

Donor observes flyer with probability $r \in (0,1)$

After observing flyer, donor chooses when to avoid opening the door:

$$h\left[U(g^*)\right] + (1-h)\left[U(0)\right] - \underbrace{\frac{(h-h_0)^2}{2\eta}}_{\text{cost of avoidance}}$$

Claim: $\exists !\ a_0 \in \left(\underline{\underline{a}}(S), \overline{a}(S)\right)$ such that

$$h^*(a) < h_0 \Leftrightarrow a < a_0$$

$$h^*(a) > h_0 \Leftrightarrow a > a_0$$

Charitable Giving: Altruism vs. Social Pressure, Slide 23

When to Open the Door

Case 1: $g^* = 0$

$$h[W + a[\ln(G_{-i})] - Sg_s] + (1 - h)[W + a[\ln(G_{-i})]] - \frac{(h - h_0)^2}{2\eta}$$

Interior solution for h^* solves:

AREC 815: Experimental and Behavioral Economics

When to Open the Door

Case 4: $g^* > g_s$

$$h[W-g^*+a[\ln(g^*+G_{-i})]]+(1-h)[W+a[\ln(G_{-i})]]-\frac{(h-h_0)^2}{2\eta}$$

AREC 815: Experimental and Behavioral Economic

Charitable Giving: Altruism vs. Social Pressure, Slide 29

When to Open the Door

Cases 2 and 3: $g^* \in (0, g_s]$

$$\Rightarrow U(g^*) = W - g^* + a [\ln (g^* + G_{-i})] - S(g_s - g^*)$$

Optimal $h^*(a, S)$ solves:

$$W-g^*(a)+a\left[\ln\left(g^*(a)+G_{-i}\right)\right]-S[g_s-g^*(a)]-[W+a\left[\ln\left(G_{-i}\right)\right]]=\frac{1}{\eta}(h^*-h_0)$$

Differentiating $h^*(a, S)$ wrt a demonstrates monotonicity

AREC 815: Experimental and Behavioral Economics

Opting Out

Implication: $\exists ! a_0 \in (\underline{a}(S), \overline{a}(S))$ such that $h^*(a, S) = h_0$

What if donors are given the option to "opt out" of solicitation?

• Donors with $a < a_0(S)$ will clearly opt out

Suppose a is distributed according to CDF F

How will behavior vary across treatments (nf, f, oo)?

AREC 815: Experimental and Behavioral Economics

Charitable Giving: Altruism vs. Social Pressure, Slide 27

Testable Predictions

Let $P(H)_t = \Pr(\text{opening door}|\text{treatment} = t)$

$$P(H)_{nf} = h_0$$

$$P(H)_f = (1-r)h_0 + r \int_{\infty}^{\infty} h^*(a,S)dF$$

$$P(H)_{oo} = (1-r)h_0 + r \int_{a_0}^{\infty} h^*(a, S)dF$$

How will the treatments impact P(H) in practice?

- Under social pressure only: $P(H)_{nf} > P(H)_f > P(H)_{oo}$
- Under altruism only: $P(H)_f = P(H)_{oo} > P(H)_{nf}$

AREC 815: Experimental and Behavioral Economics

Testable Predictions

Similar story with unconditional probability of giving:

$$P(G)_{nf} = h_0 \left[1 - F(\underline{a}(S)) \right]$$

$$P(G)_f = (1-r)h_0\left[1-F(\underline{\underline{a}}(S))\right] + r\int_{\underline{a}(S)}^{\infty}h^*(a,S)dF$$

$$P(G)_{oo} = (1-r)h_0 \left[1 - F(\underline{\underline{a}}(S))\right] + r \int_{a_0}^{\infty} h^*(a,S)dF$$

Under social pressure only: $P(G)_{nf} > P(G)_f > P(G)_{oo}$

Under altruism only: $P(G)_f = P(G)_{oo} > P(G)_{nf}$

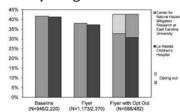
AREC 815: Experimental and Behavioral Economics Charitable Giving: Altruism vs. Social Pressure, Slide 29

Reduced Form Results

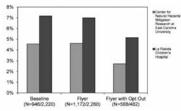
Variable: Sample:	Share of households answering the door			Share of households giving In person			Number of households giving via mail or internet	
	Pooled (1)	ECU (2)	La Rabida (3)	Pooled (4)	ECU (5)	La Rabida (6)	ECU (7)	La Rabida (8)
Baseline (no-flyer) treatment	0.4090 (N = 3166)	0.4228 (N = 946)	0.4032 (N = 2220)	0.0629	0.0507	0.0680	Zero donations across all	One (\$25) donation acros
Flyer treatment	0.3753 ($N = 3432$)	0.3993 ($N = 1172$)	0.3628 ($N = 2260$)	0.0585	0.0460	0.0650	treatments	all treatments
Flyer with opt-out treatment	0.3355 ($N = 1070$)	0.3503 ($N = 588$)	0.3174 ($N = 482$)	0.0514	0.0289	0.0788		
N	N = 7668	N = 2706	N = 4962	N = 7668	N = 2706	N = 4962	N = 2706	N = 4962

AREC 815: Experimental and Behavioral Economics

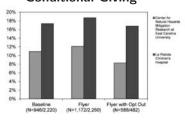
Reduced Form Results

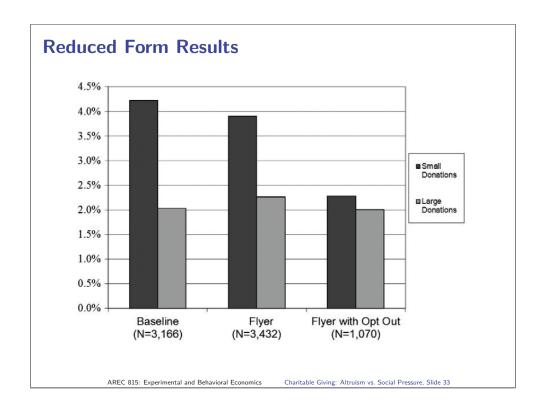

RESULTS FOR FUND-RAISING TREATMENTS

Specification:					OLS regr	essions				
Dep. var.:	Indica answering	101		tor for ing	Small amo	Indicator unt (≤ \$10)	for giving Large amo	unt (> \$10)	Amoun (includ	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Flyer treatment	-0.0387 (0.0137)***		-0.0011 (0.0062)		-0.0033 (0.0052)		0.0022 (0.0035)		-0.1459 (0.1357)	
Flyer with opt-out	-0.0967		-0.0195		-0.0193		-0.0002		-0.3041	
treatment	(0.0194)***		(0.0084)**		(0.0081)**		(0.0051)		(0.1653)*	
Indicator ECU	0.01	0.0041	-0.0249	-0.0263	-0.0127	-0.0107	-0.0123	-0.0155	-0.7611	-0.9767
charity	(0.0143)	(0.0234)	(0.0049)***	(0.0085)***	$(0.0053)^{**}$	(0.0085)	(0.0032)***	(0.0052)***	(0.1368)***	$(0.2014)^{**}$
Flyer treatment		-0.0365		0.0006		-0.0045		0.0051		0.1154
* ECU charity		(0.0313)		(0.0094)		(0.0076)		(0.0045)		(0.1240)
Flyer with opt-out		-0.089		-0.0183		-0.0222		0.0039		-0.0907
* ECU charity		$(0.0271)^{***}$		(0.0100)*		(0.0098)**		(0.0058)		(0.1268)
Flyer treatment		-0.0396		-0.0019		-0.0028		0.0009		-0.2545
* La Rabida charity		$(0.0144)^{***}$		(0.0078)		(0.0066)		(0.0046)		(0.1841)
Flyer with opt-out		-0.106		-0.0202		-0.0161		-0.0042		-0.4573
* La Rabida charity		(0.0319)***		(0.0132)		(0.0128)		(0.0087)		(0.2885)
Omitted treatment	No-flyer, I	La Rabida	No-flyer,	La Rabida		No-flyer,	La Rabida		No-flyer, I	a Rabida
Mean of dep. var. for										
omitted treatment	0.4	113	0.0	717	0.0414	0.0414	0.0215	0.0215	1.161	1.161
Fixed effects for solicitor, date- location, hour, and area rating	х	х	х	x	X	x	X	х	х	х
N	N = 7668	N = 7668	N = 7668	N = 7668	N = 7668	N = 7668	N = 7668	N = 7668	N = 7668	N = 7668


AREC 815: Experimental and Behavioral Economics Charitable Giving: Altruism vs. Social Pressure, Slide 31

Reduced Form Results


Opening the Door


Unconditional Giving

Conditional Giving

AREC 815: Experimental and Behavioral Economics

Estimates of Model Parameters

Assumptions:

- Functional form for utility function
- Altruism parameter normally distributed

Survey experiment to identify avoidance cost parameters

Minimum distance estimator: $(m(\xi) - \hat{m})'W(m(\xi) - \hat{m})$

Estimates of Model Parameters

MINIMUM-DISTANCE ESTIMATES: BENCHMARK RESULTS

Common parameters	Benchmark estimates (1)	No social pressure (2)
Prob. of home presence	0.414	0.383
(h) year 2008	(0.004)	(0.003)
Prob. of home presence	0.414	0.392
(h) year 2009	(0.007)	(0.008)
Prob. of observing flyer (r)	0.341	0.426
	(0.012)	(0.017)
Elasticity of home	0.040	0.008
presence (eta)	(0.011)	(0.003)
Implied cost of altering prob. home by 10 pp.	0.126	0.656
Survey parameters		
Mean utility (in \$) of doing	-26.863	-17.203
10-minute survey	(4.204)	(3.466)
Std. dev. of utility of	29.591	28.347
doing survey	(5.129)	(5.374)
Value of time of	80.656	83.039
one-hour survey	(22.762)	(24.898)
Social pressure cost if saying	6.197	0.000
no to survey	(1.492)	(—)

AREC 815: Experimental and Behavioral Economics Charitable Giving: Altruism vs. Social Pressure, Slide 35

Estimates of Model Parameters

Charity parameters	La Rabida	ECU	La Rabida	ECU
Share with zero altruism a	0.753	0.763	0.723	0.747
	(0.048)	(0.071)	(0.01)	(0.024)
Mean altruism a,	12.786	9.659	14.167	10.272
conditional on $a>0$	(1.444)	(1.485)	(0.452)	(0.876)
Std. dev. of altruism a,	10.545	7.994	11.569	8.455
conditional on $a>0$	(1.038)	(1.103)	(0.389)	(0.773)
Curvature of altruism	10.6	606	10.6	06
function	(4.4	466)	(—)	
Social pressure cost of	3.751	1.438	0	0
giving 0 in person	(0.581)	(0.784)	(—)	(—)
SSE	86.6	618	366.6	20

AREC 815: Experimental and Behavioral Economics Charitable Giving: Altruism vs. Social Pressure, Slide 36

Welfare Impacts

WELFARE AND DECOMPOSITION OF GIVING

Specification: Charity:	Minimum-distance La Rabida charity (1)	Benchmark estimates ECU charity (2)
Panel A. Welfare		
Welfare in standard (no-flyer) fund-raiser		
Welfare per household contacted (in \$)	-1.102 (0.145)	-0.442 (0.301)
Money raised per household contacted	0.719 (0.035)	0.333 (0.046)
Money raised per household, net of salary	0.244 (0.035)	-0.142 (0.046)
Welfare in fund-raiser with flyer		
Welfare per household contacted (in \$)	-0.952 (0.122)	-0.410 (0.288)
Money raised per household contacted	0.860 (0.044)	0.389 (0.057)
Money raised per household, net of salary	0.249 (0.044)	-0.221 (0.057)
Welfare in fund-raiser with opt-out		
Welfare per household contacted (in \$)	-0.564 (0.077)	$-0.234 \ (0.201)$
Money raised per household contacted	0.808 (0.045)	0.370 (0.055)
Money raised per household, net of salary	0.292 (0.045)	-0.145 (0.055)
AREC 815: Experimental and Behavioral Economics	Charitable Giving: Altruism	vs. Social Pressure, Slide 37

Welfare Impacts

Panel B. Decomposition of giving in standard	l (no-flyer) fund-raiser		
Share of givers who would give	0.745	0.848	
without social pressure $(S = 0)$	(0.056)	(0.079)	
Share of amount that would be given	0.726	0.816	
without social pressure $(S = 0)$	(0.03)	(0.093)	
Share of givers who seek	0.518	0.528	
the fund-raiser (happy givers)	(0.041)	(0.095)	
Panel C. Sorting in fund-raiser with flyer			
Increase in answering the door due to	0.007	0.003	
altruism (sorting in)	(0.001)	(0.001)	
Decrease in answering the door due to	-0.045	-0.018	
social pressure (sorting out)	(0.01)	(0.01)	

Summary and Conclusions

Evidence of heterogeneity in whether giving increases utility

- Lab and field evidence is consistent
- Many people do not feel comfortable saying no

Charitable fundraising may make people (donors) worse off

• Allowing for opt-out can improve efficiency

AREC 815: Experimental and Behavioral Economics