AREC 815: Experimental and Behavioral Economics

Applications of Dynamic Inconsistency: Addiction

Professor: Pamela Jakiela

Department of Agricultural and Resource Economics University of Maryland, College Park

- Three types: time consistent (TC), naif, sophisticate
- In each period, agents decide whether to "take a hit" of an addictive substance (a_t = 1) or to refrain from hitting (a_t = 0)
- Consumption utility, u_t , in each period depends only on current and past consumption of addictive good
- An individual is addicted (k_t = 1) if she took a hit last period, and is otherwise unaddicted (k_t = 0): k_t = a_{t-1}

AREC 815: Experimental and Behavioral Economics Contract Design when Agents Are Present-Biased, Slide 7

Utility from Addictive Substances

• Consumption utility within each period:

$$u_t(a_t, k_t) = \begin{cases} x_t - \rho k & \text{if } a = 1\\ 0 - (\rho + \sigma) k & \text{if } a = 0 \end{cases}$$

- Interpretation:
 - $\rho = \text{internality cost}$
 - σ = withdrawal cost (due to habit-formation)
- Stationary utility model: $x_t = \bar{x}$ for t = 1, 2, 3, ...

Utility from Addictive Substances

• Special case of more general framework:

$$u_t(a_t, k_t) = \begin{cases} x_t + f(k_t) & \text{if } a = 1\\ y_t + g(k_t) & \text{if } a = 0 \end{cases}$$

where:

- Negative internalities when f'(k) < 0 and g'(k) < 0
- Habit forming when f'(k) g'(k) > 0
- Results from simple model extend to general case (above), and to situations where addiction level is continuous function of past consumption

Utility from Addict	ive Substances	;	
	Commuting Utility		
	Consumption Utility		
	Unaddicted $(k_t = 0)$	Addicted $(k_t = 1)$	
$Hitting\;(a_t=1)$	\bar{x}	$\bar{x} - \rho$	
Refraining $(a_t = 0)$	0	$0 - (ho + \sigma)$	
 Temptation to hit: Temptation to h 	$t u_t(1,k_t) - u_t(0,k_t)$ it when unaddicted: $ar{x}$		
 Temptation to h 	it when addicted: $\bar{\mathbf{x}} + \sigma$		
AREC 815: Experimental and Be	havioral Economics Contract Design v	when Agents Are Present-Biased, Slic	e 10

When Will a Naif Choose to Hit?

• Conclusion: an unaddicted naif will hit at t = 1

$$ar{x} \geq \min\left\{eta\delta\left(
ho+\sigma
ight), \left[rac{eta\delta\left(1+\delta
ight)}{1+eta\delta}
ight]
ho
ight\}
ight.$$

- Comments:
 - A naif is more likely to hit than a TC
 - Naifs may hit expecting to quit the following period
- What does a naif actually do at t = 2?
 - This is also what a sophisticate expects to do at t = 2

When Will a Sophisticate Choose to Hit? Claim: unaddicted sophisticates hist at t = 1 ⇔ x̄ ≥ βδρ Implication: unaddicted sophisticates more likely to hit than naifs Pessimism effect Sophisticates are "worse off" than naifs in the stationary utility case? More likely to become addicted Sophisticates likely to be better off in (more relevant?) case where tastes for addictive good or present bias fluctuate over lifetime

- \blacktriangleright For young, time-consistent consumers, $\frac{\partial \pi / \partial p_{t+1}}{\partial \pi / \partial p_t} = \delta$
- ► For young, present-biased consumers, $\frac{\partial \pi / \partial p_{t+1}}{\partial \pi / \partial p_t} \in \{0, \beta \delta, \delta\}$
- Only present-biased consumers ignore future prices

AREC 815: Experimental and Behavioral Economics Contract Design when Agents Are Present-Biased, Slide 19

	a mote. a (como	ker = 1), Lin	ear Probability Mod	del		
	(i)	(ii)	(iii)	(iv)	(v)	(vi)
	Age < 20	Age < 25	Age < 30	Age < 20	Age < 25	Age < 30
$\ln(\text{price})_t$	-1.853***	-1.256***	-1.019***	-1.363***	-0.994***	-0.744**
	(0.226)	(0.135)	(0.104)	(0.525)	(0.334)	(0.294)
$\ln(\text{price})_{t+1}$	-0.118	-0.426***	-0.545***	-0.021	-0.389	-0.575**
	(0.161)	(0.096)	(0.075)	(0.471)	(0.289)	(0.251)
Ratio of		-		10000		
coefficients*	0.064	0.340**	0.534***	0.016	0.392**	0.773***
	(0.093)	(0.110)	(0.124)	(0.339)	(0.162)	(0.051)
MSA Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes
MSA-Specific Trends	Yes	Yes	Yes	Yes	Yes	Yes
N. ODS	0,289	11,647	17,975	5,289	11,647	17,975
Panei D – First-stage Es	timates of Pric	es				
(n(price) _i				0.000000	0.540444	
$in(taxes)_t$	100		-	(0.020)	0.516	(0.000)
Dedant Comb				(0.038)	(0.036)	(0.036)
Budget Gap"	-		-	(0.080)	(0.078)	(0.074)
In (mariant)				(0.069)	(0.018)	(0.074)
hp/taxas)				0.551***	0 559***	0 565***
m(ravea)t				(0.054)	(0.051)	(0.050)
Budget Can ^b		12		0.478***	0.454***	0.428***
marger out				(0.195)	(0.124)	(0.191)

	Table 3: Price	e Sensitivity Am	ong Mature	Smokers		_
	Panel A – Dependent Variable: 1(:	Smoker = 1), Linea	r Probability	Model		
		(i)	(ii)	(iii)	(iv)	
	he feeders à	Age > 30	Age > 35	Age > 30	Age > 35	
	In(price _t)	-0.824	-0.879	-0.725	-0.787	
	ln(price)	-0.641***	-0.619***	-0.531***	-0.496**	
	m(httret+1)	(0.052)	(0.057)	(0.183)	(0.213)	
	Ratio of Coefficients ^a	0.778***	0.704***	0.734***	0.630***	
		(0.125)	(0.122)	(0.044)	(0.074)	
	MSA Fixed Effects	Yes	Yes	Yes	Yes	
	MSA-Specific Time Trends	Yes	Yes	Yes	Yes	
	N. obs	40,436	34,775	40,436	34,775	_
	Panel B – First-stage Estimates of	Prices				_
	$ln(price)_t$					
	$\ln(taxes_t)$	-	-	0.494***	0.498***	
	n l c c h			(0.035)	(0.035)	
	Budget Gap ^o			(0.074)	(0.072)	
	In (price).			(0.074)	(0.072)	
	$\ln(p)(co)(+1)$	_	_	0.550***	0.559***	
	((0.048)	(0.048)	
	Budget Gap ^b	-	-	0.398***	0.384***	
				(0.138)	(0.136)	
Notes: Stand	ard errors (in parentheses) are robust an	id clustered at the	MSA level.	All specificat	ions control for a	age, age ² , race, and
education and	l include both year dummies and MSA-sp	ecific time trends.	* denotes sign	nificance at th	he 10% level; **	at the 5% level; and
*** at the 1%	level. Coefficients for in Panel A are ave	rage marginal effect	s from a prob	it regression.		
^a The ratio o	f the coefficients on ln(price_+_1) and ln(p	rice,) will equal the	net discount	factor Bb. S	tandard errors a	re calculated by the
dalta mathed	the coencience on m(precet+1) and m(p	meet) win equal the	. net discoult	meter per c	tundurd crivio u	re curcument of the
derta method.		lasts (assessed for d)	within on M			
0 Assessed to an		CONSTRUCTION CONTRACTOR	within an MS	5/4.		

Contract Design when Agents Are Present-Biased, Slide 22

AREC 815: Experimental and Behavioral Economics

Addiction: Empirical Evidence

Panel A – Dependent Va	riable: 1(Smo	ker = 1)			
	Age > 30		Age	Age < 20	
$\ln(p_t^P)$	(i)	(ii)	(iii)	(iv)	(v)
	-1.111***	-1.380***	-1.113***	-1.410***	-0.822***
	(0.118)	(0.181)	(0.118)	(0.177)	(0.166)
$\ln(p_t^T)$	-0.214***	-0.217***	-0.220***	-0.225***	-0.333***
	(0.044)	(0.068)	(0.045)	(0.068)	(0.112)
Ratio of Coefficients ^a	5.191 · · · · (1.31)	6.359** (2.07)	5.059*** (1.26)	6.267** (1.97)	2.467 (1.11)
MSA Fixed Effects	Yes	Yes	Yes	Yes	Yes
Trend	Yes	No	Yes	No	No
Trends by MSA	No	Yes	No	Yes	Yes
N obs.	37,651	37,651	32,322	32,322	5,289
R^2	0.497	0.505	0.495	0.503	0.457

